Tarini A Kotamkar, Dr.Brajendra Tiwari


In present paper N(k)-quasi Einstein manifolds is studied and its existence is Proved by two non-trivial examples. A physical example of an N(k)-quasi-Einstein manifold is given. We study an N(k)-quasi-Einstein manifold satisfying certain curvature conditions like Ž(X).S = 0, and P (X) . C = 0. Also studied Ricci-pseudosymmetric N(k)-quasi-Einstein manifolds.


Quasi Einstein manifold,N(k)-quasi Einstein manifold,projective curvature tensor, concircular curvature tensor, conformal curvature tensor,Ricci-pseudosymmetric manifold.

Full Text:



. T. Adati, G. Chuman, Special para-Sasakian manifolds D-conformal to a manifold of constant curvature, TRU Math. 19 (1983), 179–193.

. T. Adati, G. Chuman, Special para-Sasakian manifolds and concircular transformations,TRU Math. 20 (1984), 111–123.

. T. Adati, T. Miyazaw, On para contact Riemannian manifolds, TRU Math. 13 (1977), 27–39.

. A.L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.

. M.C. Chaki, On generalized quasi-Einstein manifolds, Publ. Math. Debrecen 58 (2001),683–691.

. M.C. Chaki, On pseudo Ricci-symmetric manifolds, Bulg. J. Physics 15 (1988), 526–531.

. M.C. Chaki, R.K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen 57 (2000),297–306.

. G. Chuman, D-conformal changes in para-Sasakian manifolds, Tensor, N.S. 39 (1982), 117–123.

. U.C. De, G.C. Ghosh, On quasi Einstein and special quasi Einstein manifolds, Proc. Intern.Conf. Math. and its Applications, Kuwait University, April 5-7, 2004, 178–191.

. U.C. De, G.C. Ghosh, On quasi-Einstein manifolds, Period. Math. Hungar. 48 (2004), 223–231.

. U.C. De, G.C. Ghosh, On conformally flat special quasi-Einstein manifolds, Publ. Math.Debrecen 66 (2005), 129–136.

. R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. S´er. A 44 (1992), 1–34.

. R. Deszcz, M. Hotlos, Z. Senturk, On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow J. Math. 27 (2001), 375–389.

. M.S. El Naschie, G¨odel universe, dualities and high energy particle in E-infinity, Chaos, Solitons and Fractals 25 (2005), 759–764.

. M.S. El Naschie, Is Einstein’s general field equation more fundamental than quantum field theory and particle physics?, Chaos, Solitons and Fractals 30 (2006), 525–531.

. S.R. Guha, On quasi-Einstein and generalized quasi-Einstein manifolds, Facta Univ. Niˇs 3 (2003), 821–842.

. H.G. Nagaraja, On N(k)-mixed quasi-Einstein manifolds, Europ. J. Pure Appl. Math. 3(2010), 16–25.

. C. ¨Ozg¨ur, On a class of generalized quasi-Einstein manifolds, Applied Sciences, Balkan Society of Geometers, Geometry Balkan Press, 8 (2006), 138–141.

. C. ¨Ozg¨ur, N(k)-quasi Einstein manifolds satisfying certain conditions, Chaos, Solitons andFractals 38 (2008), 1373–1377.

. C. ¨Ozg¨ur, On some classes of super quasi-Einstein manifolds, Chaos, Solitons and Fractals40 (2009), 1156–1161.

. C. ¨Ozg¨ur, S. Sular, On N(k)-quasi-Einstein manifolds satisfying certain conditions, BalkanJ. Geom. Appl. 13 (2008), 74–79.

. C. ¨Ozg¨ur, M.M. Tripathi, On the concircular curvature tensor of an N(k)-quasi Einstein manifold, Math. Pannon. 18 (2007), 95–100.

. S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40 (1988),441–448.

. M.M. Teipathi, J.S. Kim, On N(k)-quasi Einstein manifolds, Commun. Korean Math. Soc.22 (2007), 411–417.

. K. Yano, M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.

DOI: http://dx.doi.org/10.26472/ijrae.v1i9.40



Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.